skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shen, Maximilian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Using an aluminum gallium arsenide microring resonator, we demonstrate a bright quantum optical microcomb with >300 nm (>40 THz) bandwidth and more than 20 sets of time–energy entangled modes, enabling spectral demultiplexing with simple, off-the-shelf commercial telecom components. We report high-rate continuous entanglement distribution for two sets of entangled-photon pair frequency modes exhibiting up to 20 GHz/mW2pair generation rate. As an illustrative example of entanglement distribution, we perform a continuous-wave time-bin quantum key distribution protocol with 8 kbps sifted key rates while maintaining less than 10% error rate and sufficient two-photon visibility to ensure security of the channel. When the >20 frequency modes are multiplexed, we estimate >100 kbps entanglement-based key rates or the creation of a multi-user quantum communications network. The entire system requires less than 110 µW of on-chip optical power, demonstrating an efficient source of entangled frequency modes for quantum communications. As a proof of principle, a quantum key is distributed across 12 km of deployed fiber on the University of California Santa Barbara (UCSB) campus and used to encrypt a 21 kB image with <9% error. 
    more » « less